19 research outputs found

    Deep Learning based Inter-subject Continuous Decoding of Motor Imagery for Practical Brain-Computer Interfaces

    Get PDF
    Inter-subject transfer learning is a long-standing problem in brain-computer interfaces (BCIs) and has not yet been fully realized due to high inter-subject variability in the brain signals related to motor imagery (MI). The recent success of deep learning-based algorithms in classifying different brain signals warrants further exploration to determine whether it is feasible for the inter-subject continuous decoding of MI signals to provide contingent neurofeedback which is important for neurorehabilitative BCI designs. In this paper, we have shown how a convolutional neural network (CNN) based deep learning framework can be used for inter-subject continuous decoding of MI related electroencephalographic (EEG) signals using the novel concept of Mega Blocks for adapting the network against inter-subject variabilities. These Mega Blocks have the capacity to repeat a specific architectural block several times such as one or more convolutional layers in a single Mega Block. The parameters of such Mega Blocks can be optimized using Bayesian hyperparameter optimization. The results, obtained on the publicly available BCI competition IV-2b dataset, yields an average inter-subject continuous decoding accuracy of 71.49% (kappa=0.42) and 70.84% (kappa =0.42) for two different training methods such as adaptive moment estimation (Adam) and stochastic gradient descent (SGDM) respectively in 7 out of 9 subjects. Our results show for the first time that it is feasible to use CNN based architectures for inter-subject continuous decoding with a sufficient level of accuracy for developing calibration-free MI-BCIs for practical purposes

    Assessing impact of channel selection on decoding of motor and cognitive imagery from MEG data

    Get PDF
    Objective: Magnetoencephalography (MEG) based Brain-Computer Interface (BCI) involves a large number of sensors allowing better spatiotemporal resolution for assessing brain activity patterns. There have been many efforts to develop BCI using MEG with high accuracy, though an increase in the number of channels means an increase in computational complexity. However, not all sensors necessarily contribute significantly to an increase in classification accuracy, and specifically in the case of MEG-based BCI no channel selection methodology has been performed. Therefore, this study investigates the effect of channel selection on the performance of MEG-based BCI. Approach: MEG data were recorded for two sessions from 15 healthy participants performing motor imagery, cognitive imagery and a mixed imagery task pair using a unique paradigm. Performance of four state-of-the-art channel selection methods (i.e. Class-Correlation (CC), ReliefF (RF), Random Forest (RandF), and Infinite Latent Feature Selection (ILFS) were applied across six binary tasks in three different frequency bands) was evaluated in this study on two state-of-the-art features i.e. bandpower and CSP. Main results: All four methods provided a statistically significant increase in classification accuracy (CA) compared to a baseline method using all gradiometer sensors, i.e. 204 channels with band-power features from alpha (8-12Hz), beta (13-30Hz), or broadband (alpha+beta ) (8-30Hz). It is also observed that the alpha frequency band performed better than the beta and broadband frequency bands. The performance of the beta band gave the lowest CA compared with the other two bands. Channel selection improved accuracy irrespective of feature types. Moreover, all the methods reduced the number of channels significantly, from 204 to a range of 1-25, using bandpower as a feature and from 15-105 for CSP. The optimal channel number also varied not only in each session but also for each participant. Reducing the number of channels will help to decrease the computation cost and maintain numerical stability in cases of low trial numbers. Significance: The study showed significant improvement in performance of MEG-BCI with channel selection irrespective of feature type and hence can be successfully applied for BCI applications
    corecore